ar X iv : m at h / 04 12 16 9 v 3 [ m at h . D G ] 2 A ug 2 00 6 TABLEAUX OVER LIE ALGEBRAS , INTEGRABLE SYSTEMS , AND CLASSICAL SURFACE THEORY
نویسنده
چکیده
Starting from suitable tableaux over finite dimensional Lie algebras, we provide a scheme for producing involutive linear Pfaffian systems related to various classes of submanifolds in homogeneous spaces which constitute integrable systems. These include isothermic surfaces, Willmore surfaces, and other classical soliton surfaces. Completely integrable equations such as the G/G0-system of Terng and the curved flat system of Ferus–Pedit may be obtained as special cases of this construction. Some classes of surfaces in projective differential geometry whose Gauss–Codazzi equations are associated with tableaux over sl(4,R) are discussed.
منابع مشابه
ar X iv : m at h / 04 12 16 9 v 1 [ m at h . D G ] 8 D ec 2 00 4 TABLEAUX OVER LIE ALGEBRAS , INTEGRABLE SYSTEMS , AND CLASSICAL SURFACE THEORY
Starting from suitable tableaux over finite dimensional Lie algebras, we provide a scheme for producing involutive linear Pfaffian systems related to various classes of submanifolds in homogeneous spaces which constitute integrable systems. These include isothermic surfaces, Willmore surfaces, projective minimal surfaces, and other classical soliton surfaces. Completely integrable equations suc...
متن کاملar X iv : m at h / 04 10 55 1 v 1 [ m at h . D G ] 2 6 O ct 2 00 4 CLASSICAL FIELD THEORY ON LIE ALGEBROIDS : VARIATIONAL ASPECTS
The variational formalism for classical field theories is extended to the setting of Lie algebroids. Given a Lagrangian function we study the problem of finding critical points of the action functional when we restrict the fields to be morphisms of Lie algebroids. In addition to the standard case, our formalism includes as particular examples the case of systems with symmetry (covariant Euler-P...
متن کاملar X iv : m at h / 04 10 55 1 v 2 [ m at h . D G ] 1 6 N ov 2 00 4 CLASSICAL FIELD THEORY ON LIE ALGEBROIDS : VARIATIONAL ASPECTS
The variational formalism for classical field theories is extended to the setting of Lie algebroids. Given a Lagrangian function we study the problem of finding critical points of the action functional when we restrict the fields to be morphisms of Lie algebroids. In addition to the standard case, our formalism includes as particular examples the case of systems with symmetry (covariant Euler-P...
متن کاملar X iv : m at h - ph / 0 20 60 12 v 1 9 J un 2 00 2 QUIVER VARIETIES , AFFINE LIE ALGEBRAS , ALGEBRAS OF BPS STATES , AND SEMICANONICAL BASIS
We suggest a (conjectural) construction of a basis in the plus part of the affine Lie algebra of type ADE indexed by irreducible components of certain quiver varieties. This construction is closely related to a string-theoretic construction of a Lie algebra of BPS states. We then study the new combinatorial questions about the (classical) root systems naturally arising from our constructions an...
متن کاملar X iv : m at h - ph / 0 30 50 16 v 1 8 M ay 2 00 3 The von Neumann entropy and information rate for integrable quantum Gibbs ensembles , 2
This paper considers the problem of data compression for dependent quantum systems. It is the second in a series under the same title which began with [6] and continues with [12]. As in [6], we are interested in Lempel–Ziv encoding for quantum Gibbs ensembles. Here, we consider the canonical ideal lattice Boseand Fermi-ensembles. We prove that as in the case of the grand canonical ensemble, the...
متن کامل